This chapter describes the hardware implementation of Guide Probes, Calibration Unit, Reference Unit and Dichroic Mirror.
For a description of the signals connected to the adapter LCU VME system, refer to Section 2.6. For a connection list of all the computer I/O signals, refer to
Section 2.7. For maintenance information and a list of drawings related to this chapter, refer to Section 2.10 and Section 2.11.
The control of all axes in the adapter is built around 4-Channel Controller Boards from MACCON. Two Boards are required to handle all the functions.
All functions are controlled by the Adapter LCU. Eight of the motor units of the adapter are equiped with incremental encoders and controlled by two Maccon Motion Controller boards. The remaining motors are controlled by
three VME4SE-X1 Version -01 Servo Amplifier boards. The motor controllers are located in the VME chassis together with the
Interlock board and the Acromag Digital I/O board. (Refer to Section 2.5). Motor Controllers and Drivers are coupled by a Backplane Connection through a 96-pin DIN 41612 connector.
The encoders and limit switches have their own supplies. The VME Chassis and Power Supply Chassis are mounted on the adapter itself.
Function | Name | Code | Type | Vmotor | VME4SA | Limits | Auxiliary Signals |
F1 | Guide Probe 1 X | GP1X | DC mot/enc | 12V | 1 | UL,LL | Blade+, Blade- |
F2 | Guide Probe 1 Y | GP1Y | DC mot/enc | 24V | 1 | UL,LL | - |
F3 | Guide Probe 1 T | GP1T | DC mot/enc | 12V | 1 | UL,LL | - |
F4 | Reference Unit | RU | DC mot/enc | 12V | 1 | UL,LL | CO-RU-GP1Y(Collision) CO-RU-GP1T(Collision) |
F5 | Guide Probe 2 X | GP2X | DC mot/enc | 12V | 2 | UL,LL | Blade +, Blade- |
F6 | Guide Probe 2 Y | GP2Y | DC mot/enc | 24V | 2 | UL,LL | - |
F7 | Guide Probe 2 T | GP2T | DC mot/enc | 12V | 2 | UL,LL | - |
F8 | Calibration Unit | CU | DC mot/enc | 12V | 2 | UL,LL | - |
F9 | Folding Mirror | FM | CD mot/2pos | 12V | 3 | UL.LL | - |
F10 | Reference Unit Turret | RUT | CD mot/2pos | 12V | 3 | - | RUTP0(PositionBit0) RUTP1(PositionBit1) |
F11 | - | - | - | - | - | - | - |
F12 | Calibration LED | RULED | On/Off | - | - | - | - |
The position information is given by incremental encoders type MINIROD 420/1000. The encoder signals are connected to the Maccon Controller board via the Backplane Connector. No brake is provided with the motor, so that during operation it must remain under servo loop control. Therefore all axes are controlled in parallel mode. No tacho is provided (for mechanical reasons). There is no velocity loop; only a position loop.
The reference voltage leaving the control card is fed via a current amplifier to the motor. Two limit switches are provided at each mechanical end of the motion. One of these is also used for initialisation. A full description of the initialisation is given in Section 2.4.
DM - Dichroic Folding Mirror
The Dichroic Folding Mirror only has two positions, in (at upper HW limit) and out (at lower HW limit). It splits the light beam to the autoguider camera and reflect one part of the light beam to the CCD camera which is used for image analysis.
RU and RUT - Reference Unit and Reference Unit Turret.
The Reference Unit consists of the reference Unit Turret (wheel) which is mounted on a moving platform. This platform (RU) moves parallel to the GP1T and GP1Y unit and the position is always between these two units.
The Reference Unit Turret is a wheel with three positions, pin hole, fully open and reference light. The reference light is a LED which is turned on if the wheeel is in this position, respectively turned off when not in this position.
The Interlock Card takes care of all limit switches plus the collision detectors. As the two Guide Probes and the Calibration unit share a common field, and as the Turret could be squeezed between Guide Probe 1 and Trombone 1, a hardware interlock is implemented in order to avoid collisions. Each limit switch acts on the interlock; their status can also be read by the computer.
The interlock functions which are dependant on the hardware lower limit or hardware upper limit switches can be active to any time of the normal operation of the nttad. E.g. if the guide probe 1 or guide probe 2 are in the field, the calibration unit upper hardware limit is active, in order to prevent any movement of the calibration unit and vice versa. This is part of the normal operation. Nevertheless the nttad software should not try to start a movement if the respective interlock function is active. The interlock function is evaluated by the position of the involved motor unit (if they are on lower limit or not) and the software calculates whether a real limit switch is active or an interlock condition and returns the appropiate (Error) reply. The functions to check the interlock conditions are located in the file nttadMotionMot.c
Interlock Latch
In case of collision between the two Guide Probes, a latch is set which allows the motors to go backwards only. The signal cgp1gp2i gives the status of the latch. The computer resets the latch when any of guide probe axes X are back at the negative limit: rescgp1gp2o (minimum width:10 microsec). A manual reset is also provided on the front panel of the Interlock Card. A software safety is also implemented and takes care of the restricted area of each axis during normal operation.
Enable
The enable acts on the Interlock Card. The computer can enable all motors, or disable them in the following cases:
In this situation the motor would run away, and the computer would lose control of the axis. To prevent this, a limit is set to the Current Position Error. Position error maximum: 12,000 incremental counts.
Channel | Function | Rt(TG) | Rg(P) | Ci(I) | Cd(D) | Rcl |
1 | F9/FM | Open | 220 KOhm | Short circuit | Open | 0.56 Ohm |
2 | F10/RUT | Open | 160 KOhm | Short circuit | Open | 0.56 Ohm |
3 | Not used | - | - | - | - | - |
4 | Not used | - | - | - | - | - |
Channel | Function | Rt(TG) | Rg(P) | Ci(I) | Cd(D) | Rcl |
1 | F1/GP1X | Open | 220 KOhm | Short circuit | Open | 0.56 Ohms |
2 | F2/GP1Y | Open | 120 KOhm | Short circuit | Open | 0.56 Ohms |
3 | F3/GP1T | Open | 220 KOhm | Short circuit | Open | 0.56 Ohms |
4 | F4/RU | Open | 220 KOhm | Short circuit | Open | 0.56 Ohms |
Channel | Function | Rt(TG) | Rg(P) | Ci(I) | Cd(D) | Rcl |
1 | F5/GP2X | Open | 220 KOhm | Short circuit | Open | 0.56 Ohm |
2 | F6/GP2Y | Open | 120 KOhm | Short circuit | Open | 0.56 Ohm |
3 | F7/GP2T | Open | 220 KOhm | Short circuit | Open | 0.56 Ohm |
4 | F8/CU | Open | 220 KOhm | Short circuit | Open | 0.56 Ohm |
All the motors controlled by a MACCON controller need tuning of the servo loop parameters and can be individually set for each axis. All the parameters are configured in the DB of the motor library.
* GP1T at position 160[mm] -1460[mA]
* GP1T at position 106[mm] -1000[mA]
* GP1T at position 155[mm] - 571[mA]
DEVICE | Init. Enc. Pos. | Max. Pos.[mm] | Current [mA] |
GP1X | TBD | TBD | TBD |
GP1Y | TBD | TBD | TBD |
GP1T | TBD | TBD | TBD |
GP2X | TBD | TBD | TBD |
GP2Y | TBD | TBD | TBD |
GP2T | TBD | TBD | TBD |
RU | TBD | TBD | TBD |
CU | TBD | TBD | TBD |
The parameters for the proportional gain (Kp) integral gain (Ki) an differential gain (Kd) are listed in the following tables. The two sides of the adapter control software have slightly different final settings. They depend on other factors such as: PER, K, encoder resolution, current loop gain; which are identical for all axes.
The following values can be used as a first approximation:
State | Proportional gain | Integral gain | Differential gain |
Steady state | 15,000 | 500 | 200,000 |
The position ramp is up to 6, 000 incremental counts/second (6mm/s).
Global settings:
guide probe head postion | 330000 |
guide probe width | 107000 |
guide probe touch position | 227000 |
reference unit guide probe y axis touch position | 438000 |
reference unit guide probe 1 trombone touch position | -5000 |
The actual configuration setting:
Unit | Kp (proportional_gain) | Ki (integral_gain) | Kd (differential_gain) | Centre field | Tolerance | Searchspeed (low) | Searchspeed (high) | Zero Pulse Position | SW UL |
GP1X | 7500 | 15 | 150000 | 167.2 | 3 | 300 | 4000 | 1500 | 172500 |
GP1Y | 12000 | 40 | 150000 | 165.2 | 3 | 300 | 4000 | 1500 | 321500 |
GP1T | 50000 | 40 | 150000 | 124.0 | 3 | - | - | 1500 | 219000 |
GP2X | 10000 | 400 | 150000 | 168.9 | 3 | 1200 | 8000 | 1500 | 173500 |
GP2Y | 8000 | 40 | 150000 | 171.1 | 3 | 1200 | 8000 | 1500 | 322500 |
GP2T | 30000 | 40 | 150000 | 122.0 | 3 | - | - | 1500 | 222500 |
RU | 20000 | 30 | 150000 | 249.25 | 3 | - | - | 1500 | 434000 |
CU | 12000 | 40 | 150000 | 382.0 | 3 | - | - | 1500 | 382000 |
PER = 1ms; K = 2; SPE = 4000; MOTOR VOLTAGE = +/- 17V.
Global settings:
guide probe head postion | 330000 |
guide probe width | 106000 |
guide probe touch position | 219000 |
reference unit guide probe y axis touch position | 438000 |
reference unit guide probe 1 trombone touch position | -3000 |
The actual configuration setting:
Unit | Kp (proportional_gain) | Ki (integral_gain) | Kd (differential_gain) | Centre field | Tolerance | Searchspeed (low) | Searchspeed (high) | Zero Pulse Position | SW UL |
GP1X | 10000 | 50 | 150000 | 167.3 | 3 | 600 | 4000 | 1500 | 169500 |
GP1Y | 10000 | 50 | 150000 | 161.1 | 3 | 600 | 4000 | 2000 | 322000 |
GP1T | 10000 | 50 | 150000 | 130.5 | 3 | - | - | 2000 | 220000 |
GP2X | 15000 | 50 | 150000 | 165.8 | 3 | 1200 | 6000 | 2000 | 170000 |
GP2Y | 15000 | 50 | 150000 | 164.9 | 3 | 1200 | 6000 | 2000 | 326000 |
GP2T | 15000 | 50 | 150000 | 123.0 | 3 | - | - | 2000 | 222000 |
RU | 7500 | 50 | 100000 | 254.0 | 5 | - | - | 1500 | 438000 |
CU | 5000 | 30 | 50000 | 375.0 | 3 | - | - | 2000 | 375500 |
PER = 1ms; K = 2; SPE = 4000; MOTOR VOLTAGE = +/- 17V.
Set by software to a minimal value:
The total range is defined by the optical requirements:
UNIT | lowSearchVel | highSearchVel | trackingPosOffset | trackingTimeOffset | encoderTicksPerMm | moveTimeout | centerPos | lowerLimitPos | upperLimitPos |
GP1X | 300 | 4000 | TBD | TBD | 1000 | 100000 | 167.2 | -1000 | 172500 |
GP1Y | 300 | 4000 | TBD | TBD | 1000 | 100000 | 165.2 | -1000 | 321500 |
GP1T | - | - | TBD | TBD | 1000 | 100000 | 124.0 | -1000 | 219000 |
GP2X | 1200 | 8000 | TBD | TBD | 1000 | 100000 | 168.9 | -1000 | 173500 |
GP2Y | 1200 | 8000 | TBD | TBD | 1000 | 100000 | 171.1 | -1000 | 322500 |
GP2T | - | - | TBD | TBD | 1000 | 100000 | 122.0 | -1000 | 222500 |
RU | - | - | - | - | 1000 | 100000 | 249.25 | -1000 | 434000 |
CU | - | - | - | - | 1000 | 100000 | 382.0 | -1000 | 382000 |
RUT | - | - | - | - | - | 100000 | - | - | - |
DM | - | - | - | - | - | 100000 | - | - | - |
UNIT | lowSearchVel | highSearchVel | trackingPosOffset | trackingTimeOffset | encoderTicksPerMm | moveTimeout | centerPos | lowerLimitPos | upperLimitPos |
GP1X | 600 | 4000 | TBD | TBD | 1000 | 100000 | 167.3 | -1000 | 169500 |
GP1Y | 600 | 4000 | TBD | TBD | 1000 | 100000 | 161.1 | -1000 | 322000 |
GP1T | - | - | TBD | TBD | 1000 | 100000 | 130.5 | -1000 | 220000 |
GP2X | 1200 | 6000 | TBD | TBD | 1000 | 100000 | 165.8 | -1000 | 170000 |
GP2Y | 1200 | 6000 | TBD | TBD | 1000 | 100000 | 164.9 | -1000 | 326000 |
GP2T | - | - | TBD | TBD | 1000 | 100000 | 123.0 | -1000 | 222000 |
RU | - | - | - | - | 1000 | 100000 | 254.0 | -1000 | 438000 |
CU | - | - | - | - | 1000 | 100000 | 375.0 | -1000 | 375500 |
RUT | - | - | - | - | - | 100000 | - | - | - |
DM | - | - | - | - | - | 100000 | - | - | - |
A positive move on each unit implies:
This sequence should prevent any collision during the initialisation procedure. From then on, the initialisation of any axis can be done. The computer arbitarily sets upperLimitPos to the maximum possible, and moves the axis negative until it reaches the limit. This is the PARKING position. The first zero pulse after leaving the limit, sets the position counter to zero.
The mechanical layout of the nttad hardware allows the movement of several motor units which share the same physical area. This is a part of the features of nttad and part of normal operation. The following units can be move concurrently and may collide:
The nttad software dynamically checks at a start or during a movement whether a collision may occur, and in the latter rejects or stops the corresponding motor unit.
To go out of interlock:
To go out of the interlock:
Any function can be tested with ESO software commands or terminal mode.
The signals in the adapter subsystem are divided into the following groups that indicate where the signals originate (inputs to the computer), or where they are routed (outputs from the computer).
If a collision between guide probe 1 and 2 is detected, the collision detected latch is set. This latch can be cleared by the signal rescgp1gp2o The other collision signals are not latched.
NAME | TYPE | DESCRIPTION |
cgp1gp2i | rtUINT32S | Collision detected between probe 1 and probe 2 |
. | DI*1 | Collision detected between ref. unit and |
guide probe 1, axis Trombone | ||
AACORUGP1Y* | DI*1 | Collision detected between ref. unit and |
guide probe 1, axis Y | ||
AACORESET* | DO*1 | Reset the GP1 and 2 collision detected latch |
NAME | TYPE | DESCRIPTION |
AACUTREF | AO*12 | Cal. unit, torque reference |
AACUCUR | AI*8 | Cal. unit, motor current |
AACUIES | DI*1 | Cal. unit, incremental encoder sine signal |
AACUIEC | DI*1 | Cal. unit, incremental encoder, cosine signal |
AACUIEZ | DI*1 | Cal. unit, incremental encoder pulse signal |
AACULSP* | DI*1 | Cal. unit, positive limit detected |
AACULSN* | DI*1 | Cal. unit, negative limit detected |
The folding mirror is moved with an on/off motor, ie. no position control is provided. Therefore, the computer output is a motor voltage reference.
NAME | TYPE | DESCRIPTION |
AAFMVREF | AO*8 | Folding mirror, motor voltage reference |
AAFMLSP* | DI*1 | Folding mirror, positive limit detected |
AAFMLSN* | DI*1 | Folding mirror, negative limit detected |
The guide probe signals can be divided into :
NAME | TYPE | DESCRIPTION |
AAGP1XTREF | AO*12 | Probe 1, axis X, torque reference |
AAGP1XCUR | AI*8 | Probe 1, axis X, motor current |
AAGP1XIES | DI*1 | Probe 1, axis X, incremental encoder sine signal |
AAGP1XIEC | DI*1 | Probe 1, axis X, incremental encoder cosine signal |
AAGP1XIEZ | DI*1 | Probe 1, axis X, incremental encoder zero pulse signal |
AAGP1XLSP* | DI*1 | Probe 1, axis X, positive limit detected |
AAGP1XLSN* | DI*1 | Probe 1, axis X, negative limit detected |
AAGP1YTREF | AO*12 | Probe 1, axis Y, torque reference |
AAGP1YCUR | AI*8 | Probe 1, axis Y, motor current |
AAGP1YIES | DI*1 | Probe 1, axis Y, incremental encoder sine signal |
AAGP1YIEC | DI*1 | Probe 1, axis Y, incremental encoder cosine signal |
AAGP1YIEZ | DI*1 | Probe 1, axis Y, incremental encoder zero pulse signal |
AAGP1YLSP* | DI*1 | Probe 1, axis Y, positive limit detected |
AAGP1YLSN* | DI*1 | Probe 1, axis Y, negative limit detected |
AAGP1TTREF | AO*12 | Probe 1, axis Trombone, torque reference |
AAGP1TCUR | AI*8 | Probe 1, axis Trombone, motor current |
AAGP1TIES | DI*1 | Probe 1, axis Trombone, incremental encoder sine signal |
AAGP1TIEC | DI*1 | Probe 1, axis Trombone, incremental encoder cosine signal |
AAGP1TIEZ | DI*1 | Probe 1, axis Trombone, incremental encoder zero pulse signal |
AAGP1TLSP* | DI*1 | Probe 1, axis Trombone, positive limit detected |
AAGP1TLSN* | DI*1 | Probe 1, axis Trombone, negative limit detected |
AAGP2XTREF | AO*12 | Probe 2, axis X, torque reference |
AAGP2XCUR | AI*8 | Probe 2, axis X, motor current |
AAGP2XIES | DI*1 | Probe 2, axis X, incremental encoder sine signal |
AAGP2XIEC | DI*1 | Probe 2, axis X, incremental encoder cosine signal |
AAGP2XIEZ | DI*1 | Probe 2, axis X, incremental encoder zero pulse signal |
AAGP2XLSP* | DI*1 | Probe 2, axis X, positive limit detected |
AAGP2XLSN* | DI*1 | Probe 2, axis X, negative limit detected |
AAGP2YTREF | AO*12 | Probe 2, axis Y, torque reference |
AAGP2YCUR | AI*8 | Probe 2, axis Y, motor current |
AAGP2YIES | DI*1 | Probe 2, axis Y, incremental encoder sine signal |
AAGP2YIEC | DI*1 | Probe 2, axis Y, incremental encoder cosine signal |
AAGP2YIEZ | DI*1 | Probe 2, axis Y, incremental encoder zero pulse signal |
AAGP2YLSP* | DI*1 | Probe 2, axis Y, positive limit detected |
AAGP2YLSN* | DI*1 | Probe 2, axis Y, negative limit detected |
AAGP2TTREF | AO*12 | Probe 2, axis Trombone, torque reference |
AAGP2TCUR | AI*8 | Probe 2, axis Trombone, motor current |
AAGP2TIES | DI*1 | Probe 2, axis Trombone, incremental encoder sine signal |
AAGP2TIEC | DI*1 | Probe 2, axis Trombone, incremental encoder cosine signal |
AAGP2TIEZ | DI*1 | Probe 2, axis Trombone, incremental encoder zero pulse signal |
AAGP2TLSP* | DI*1 | Probe 2, axis Trombone, positive limit detected |
AAGP2TLSN* | DI*1 | Probe 2, axis Trombone, negative limit detected |
NAME | TYPE | DESCRIPTION |
AARUTREF | AO*12 | Ref. unit, torque reference |
AARUCUR | AI*8 | Ref. unit, motor current |
AARUIES | DI*1 | Ref. unit, incremental encoder sine signal |
AARUIEC | DI*1 | Ref. unit, incremental encoder cosine signal |
AARUIEZ | DI*1 | Ref. unit incremental encoder zero pulse signal |
AARULSP* | DI*1 | Ref. unit, positive limit detected |
AARULSN* | DI*1 | Ref. unit, negative limit detected |
AARUTVREF | AO*8 | Ref. unit, turret motor voltage reference |
AARUTP0 | DI*1 | Ref. unit, turret position bit 0 |
AARUTP1 | DI*1 | Ref. unit, turret position bit 1 |
AARUTPC0 | DO*1 | Ref. unit, turret position command bit 0 |
AARUTPC1 | DO*1 | Ref. unit, turret position command bit 1 |
NAME | TYPE | DESCRIPTION |
AAD1TEMP | DI*1 | Driver Board 1 overtemperature warning |
AAD2TEMP | DI*1 | Driver board 2 overtemperature warning |
AAD3TEMP | DI*1 | Driver board 3 overtemperature warning |
AAENABLE | DO*1 | Enable power amplifiers |
AAISITON* | DO*1 | Camera 1 and 2 power on |
AAREFLIGHT* | DO*1 | Reference light on |
SIGNAL | TSVME 440 No.1, CONN P2, ROW A | TSVME 440 No 1, CONN P2, ROW C | |
____________________ | __________ | __________ | __________ |
____________________ | __________ | __________ | __________ |
____________________ | __________ | __________ | __________ |
____________________ | __________ | __________ | __________ |
____________________ | __________ | __________ | __________ |
____________________ | __________ | __________ | __________ |
____________________ | __________ | __________ | __________ |
Single-slot 6U height card.
+15V logic supply for limit switches.
+5V logic supply interlock logic.
Interlock survey between the various axes.
When an interlock takes place, the current motion is disabled and a warning is sent to the computer. A relay contact is opened in the motor line. The LEDS on the front panel displays the interlock status.
The two metallic "blades" are included in a Wheatstone bridge. Any imbalance in the bridge (contact with the other blade to ground or to supply voltage) causes an interlock active. As the contact between the two blades may be intermittent (if, for example, the two guide probes are sliding against each other) this intermittent lock is latched and will be reset by the computer only after new initialisation has been carried out.
Implemented with proximity switches as for other positive or negative limits, therefore they are also displayed with green LEDs.
For increased safety, the proximity sensors are mounted such that they are normally active:
Definition: a (*) after a signal name means logically true when voltage level is low.
PIN | ROW | SIGNAL | ROW | SIGNAL |
_____ | _____ | ____________________ | _____ | ____________________ |
_____ | _____ | ____________________ | _____ | ____________________ |
_____ | _____ | ____________________ | _____ | ____________________ |
_____ | _____ | ____________________ | _____ | ____________________ |
_____ | _____ | ____________________ | _____ | ____________________ |
_____ | _____ | ____________________ | _____ | ____________________ |
_____ | _____ | ____________________ | _____ | ____________________ |
_____ | _____ | ____________________ | _____ | ____________________ |
_____ | _____ | ____________________ | _____ | ____________________ |
_____ | _____ | ____________________ | _____ | ____________________ |
_____ | _____ | ____________________ | _____ | ____________________ |
_____ | _____ | ____________________ | _____ | ____________________ |
_____ | _____ | ____________________ | _____ | ____________________ |
_____ | _____ | ____________________ | _____ | ____________________ |
_____ | _____ | ____________________ | _____ | ____________________ |
_____ | _____ | ____________________ | _____ | ____________________ |
_____ | _____ | ____________________ | _____ | ____________________ |
_____ | _____ | ____________________ | _____ | ____________________ |
_____ | _____ | ____________________ | _____ | ____________________ |
_____ | _____ | ____________________ | _____ | ____________________ |
_____ | _____ | ____________________ | _____ | ____________________ |
_____ | _____ | ____________________ | _____ | ____________________ |
_____ | _____ | ____________________ | _____ | ____________________ |
_____ | _____ | ____________________ | _____ | ____________________ |
_____ | _____ | ____________________ | _____ | ____________________ |
_____ | _____ | ____________________ | _____ | ____________________ |
_____ | _____ | ____________________ | _____ | ____________________ |
_____ | _____ | ____________________ | _____ | ____________________ |
_____ | _____ | ____________________ | _____ | ____________________ |
_____ | _____ | ____________________ | _____ | ____________________ |
_____ | _____ | ____________________ | _____ | ____________________ |
_____ | _____ | ____________________ | _____ | ____________________ |
Definition: a (*) after a signal name means logically true when voltage level is low.
Pin# | A | C |
1 | VC2 | VC1 |
2 | GND2 | GND1 |
3 | BLADE2+ | BLADE1+ |
4 | BLADE2- | BLADE1- |
5 | . | . |
6 | CO-GP1-GP2-OUT* | CO-GP1-GP2-RESET* |
7 | . | . |
8 | RU-LED-OUT | RU-LED-IN* |
9 | CO-RU-GP1Y-OUT* | CO-RU-GP1Y-IN |
10 | CO-RU-GP1T-OUT* | CO-RU-GP1T-IN |
11 | RUT-P0-OUT | RUT-P0-IN |
12 | RUT-P1-OUT | RUT-P1-IN |
13 | F10-UL-OUT | . |
14 | F10-LL-OUT | . |
15 | F9-UL-OUT | F9-UL-IN |
16 | F9-LL-OUT | F9-LL-IN |
17 | F8-UL-OUT | F8-UL-IN |
18 | F8-LL-OUT | F8-LL-IN |
19 | F7-UL-OUT | F7-UL-IN |
20 | F7-LL-OUT | F7-LL-IN |
21 | F6-UL-OUT | F6-UL-IN |
22 | F6-LL-OUT | F6-LL-IN |
23 | F5-UL-OUT | F5-UL-IN |
24 | F5-LL-OUT | F5-LL-IN |
25 | F4-UL-OUT | F4-UL-IN |
26 | F4-LL-OUT | F4-LL-IN |
27 | F3-UL-OUT | F3-UL-IN |
28 | F3-LL-OUT | F3-LL-IN |
29 | F2-UL-OUT | F2-UL-IN |
30 | F2-LL-OUT | F2-LL-IN |
31 | F1-UL-OUT | F1-UL-IN |
32 | F1-LL-OUT | F1-LL-IN |
For maintenance facilities, a test box is provided.
IMPORTANT: Before using the Test Box, try the handset on VME4SA Amplifier Board.
The Test Box BYPASSES some Interlock Potections !
YOU MUST KNOW WHAT YOU ARE DOING WHEN USING THE ADAPTER TEST BOX.
TITLE/ SUB-TITLE | SHT NUMBER | LAST UPDATE | DRAWING NUMBER |
ADAPTER | |||
- General Assembly | 1 | NTT30-00-01-A | |
- Adapter Controller Boxes intercon. | 1 | 14-03-90 | INTERCON.SCH |
- Intercon. Adapter to Control Rack | 1 | 14-03-90 | EXTCAB01.DWG |
- Adapter Rotator Cable Routing (Sht 1) | 1 | 17-05-90 | ARACAB01.DWG |
- Adapter Rotator Cable Routing (Sht 2) | 1 | 17-05-90 | ARBCAB01.DWG |
- Instrument Room A Cable Routing | 1 | 08-03-90 | IRACAB01.DWG |
- Instrument Room B Cable Routing | 1 | 08-03-90 | IRBCAB01.DWG |
- Adapter Interconnection Overview | 1 | 06-03-90 | CS-E-1663 |
- Controller Interconnection Diagram | 1 | 08-05-89 | CS-E-1520 |
- Interlock Principle | 1 | 13-03-90 | CS-E-1519 |
- Interlock General Diagram | 1 | 06-05-89 | CS-E-1601 |
Folding Mirror Control | 1 | 30-03-88 | CS-E-1504 |
Adapter Interconn. Wiring Diagram | 1 | 12-06-90 | CS-E-1659 |
2 | 12-06-90 | ||
Guide Probe Interlock Card | 1 | 07-12-88 | CS-P-1567 |
2 | 13-03-90 | ||
3 | 06-05-89 | ||
4 | 06-05-89 | ||
5 | 10-11-88 | ||
Driver Card | 1, 2 | 06-03-90 | CS-E-1501 |
Driver Card PCB Layout | 1 | CS-P-1501B | |
Current Amplifier | 1 | 11-04-88 | CS-E-1507 |
VME System Reset Stretcher | 1 | 11-11-88 | CS-P-1558 |
Adapter Supply Chassis | |||
- Wiring Diagram | 1 | 06-03-90 | CS-E-1670 |
- Layout | 1 | 05-07-89 | CS-E-1674 |
Adapter Guide Probe Controller | 1/3 | 06-03-90 | CS-E-1672 |
- Chassis Layout | 2/3 | 28-06-89 | CS-E-1672 |
- Wiring Diagram | 3/3 | 06-03-90 | CS-E-1672 |
- ISIT Remote Power ON/OFF | 1 | 13-02-90 | ISITON.SCH |
ANTARES | |||
- Layout | 1 | 07-07-89 | CS-E-1676 |
- Control Chassis Wiring | 1 | 06-07-89 | CS-E-1675 |
- 5V Relay | 1 | 12-12-88 | CS-P-1532 |
- Parts List | 1 | 18-07-89 | |
- Image Analysis Head Correction | 1 | 21-11-88 | TK512M1A |
ADAPTER WIRING LIST | |||
- Subsystem Power Supply Distribution | 1 | 04-09-89 | AAPSDIST.SCH |
- ISIT 1, 2 Wiring Diagram | 1 | 16-04-90 | AAISIT.SCH |
- Block Unit Wiring | 1 | 17-01-90 | AABLOCKW.SCH |
- Guide Probe 1 X Axis | 1 | 02-01-90 | AAGP1X'.SCH |
- Guide Probe 1 Y Axis | 1 | 24-03-89 | AAGP1Y'.SCH |
- Guide Probe 1 T Axis | 1 | 24-03-89 | AAGP1T'.SCH |
- Reference Unit Wiring | 1 | 19-04-89 | AARU'.SCH |
- Reference Unit Turret Wiring | 1 | 16-03-90 | AARUT'.SCH |
- Calibration Unit | 1 | 16-03-90 | AACU'.SCH |
- Guide Probe 2 X Axis | 1 | 16-03-90 | AAGP2X'.SCH |
- Guide Probe 2 Y Axis | 1 | 19-04-89 | AAGP2Y'.SCH |
- Guide Probe 2 T Axis | 1 | 24-03-89 | AAGP2T'.SCH |
- Folding Mirror | 1 | 16-03-90 | AAFM'.SCH |
Adapter Test Box Front Panel | 1 | 20-09-89 | CS-E-1685 |
Limit Switch Wiring | 1 | 01-11-94 | LIMWIR1.DWG |
LCU Motor Wiring | 1 | 01-11-94 | MOTWIR1.DWG |
Encoder Connections | 1 | 13-10-94 | PWRENCOD.DWG |
Limit and Status Switch | 1 | 13-10-94 | PWRLIMSW.DWG |
LCU Encoder Wiring (Sht 1) | 1 | 01-11-94 | ENCWIR1.DWG |
LCU Encoder Wiring (Sht 2) | 2 | 01-11-94 | ENCWIR2.DWG |
LCU VME 4SA Backplane | 1 | 01-11-94 | HARTING1.DWG |
VME Layout | 1 | 30-09-94 | VME1.DWG |
LCU Power Cable | 1 | 20-04-95 | PWRCAB1.DWG |
LCU Fan Wiring | 1 | 02-11-94 | FANWIR.DWG |
LCU Test Power Supply | 1 | 28-10-94 | PS1.DWG |
LCU Power Supply Wiring | 1 | 02-11-94 | PSWIR.DWG |
LCU Digital I/O Wiring | 1 | 01-11-94 | DIGIO.DWG |
Interlock RU Collision | 1 | 05-12-94 | COLL.DWG |
Interlock GP Collision | 1 | 05-12-94 | COLL2.DWG |
Interlock Turret Position | 1 | 16-11-94 | TORRPOS.DWG |
Interlock F1/GP1X | 1 | 05-12-94 | ILF1.DWG |
Interlock F2/GP1Y | 1 | 05-12-94 | ILF2.DWG |
Interlock F3/GP1T | 1 | 05-12-94 | ILF3.DWG |
Interlock F4/RU | 1 | 16-11-94 | ILF4.DWG |
Interlock F5/GP2X | 1 | 05-12-94 | ILF5.DWG |
Interlock F6/GP2Y | 1 | 16-11-94 | ILF6.DWG |
Interlock F7/GP2T | 1 | 16-11-94 | ILF7.DWG |
Interlock F8/CU | 1 | 05-12-94 | ILF8.DWG |
Interlock F9/FM | 1 | 16-11-94 | ILF9.DWG |
Interlock F10/RUT | 1 | 16-11-94 | ILF10.DWG |
Interlock F11/ISITON | 1 | 16-11-94 | ILF11.DWG |
Interlock F12/RULED | 1 | 16-11-94 | ILF12.DWG |
Interlock Board (Sht 1) | 1 | 04-11-94 | ILBOARD1.DWG |
Interlock Board (Sht 2) | 2 | 04-11-94 | ILBOARD2.DWG |
Relay Interface | 1 | 03-11-94 | RELAYB1.DWG |
Sensor Board | 1 | 22-11-94 | HEADS.DWG |
LCU Rear Panel | 1 | 27-09-94 | PANEL1.DWG |