Chapter 2 - Adapter Hardware

2.1 INTRODUCTION

This chapter describes the hardware implementation of Guide Probes, Calibration Unit, Reference Unit and Dichroic Mirror.

For a description of the signals connected to the adapter LCU VME system, refer to Section 2.6. For a connection list of all the computer I/O signals, refer to Section 2.7. For maintenance information and a list of drawings related to this chapter, refer to Section 2.10 and Section 2.11.

2.2 MACCON CONTROLLER

2.2.1 Overview

The control of all axes in the adapter is built around 4-Channel Controller Boards from MACCON. Two Boards are required to handle all the functions.

2.2.2 Hardware

All functions are controlled by the Adapter LCU. Eight of the motor units of the adapter are equiped with incremental encoders and controlled by two Maccon Motion Controller boards. The remaining motors are controlled by three VME4SE-X1 Version -01 Servo Amplifier boards. The motor controllers are located in the VME chassis together with the Interlock board and the Acromag Digital I/O board. (Refer to Section 2.5). Motor Controllers and Drivers are coupled by a Backplane Connection through a 96-pin DIN 41612 connector. The encoders and limit switches have their own supplies. The VME Chassis and Power Supply Chassis are mounted on the adapter itself.

Guide Probe LCU - Function Overview


FunctionNameCodeTypeVmotorVME4SALimitsAuxiliary Signals
F1Guide Probe 1 XGP1XDC mot/enc12V1UL,LLBlade+, Blade-
F2Guide Probe 1 YGP1YDC mot/enc24V1UL,LL-
F3Guide Probe 1 TGP1TDC mot/enc12V1UL,LL-
F4Reference UnitRUDC mot/enc12V1UL,LLCO-RU-GP1Y(Collision) CO-RU-GP1T(Collision)
F5Guide Probe 2 XGP2XDC mot/enc12V2UL,LLBlade +, Blade-
F6Guide Probe 2 YGP2YDC mot/enc24V2UL,LL-
F7Guide Probe 2 TGP2TDC mot/enc12V2UL,LL-
F8Calibration UnitCUDC mot/enc12V2UL,LL-
F9Folding MirrorFMCD mot/2pos12V3UL.LL-
F10Reference Unit TurretRUTCD mot/2pos12V3-RUTP0(PositionBit0) RUTP1(PositionBit1)
F11-------
F12Calibration LEDRULEDOn/Off----

2.2.3 Position-controlled Axes

The position information is given by incremental encoders type MINIROD 420/1000. The encoder signals are connected to the Maccon Controller board via the Backplane Connector. No brake is provided with the motor, so that during operation it must remain under servo loop control. Therefore all axes are controlled in parallel mode. No tacho is provided (for mechanical reasons). There is no velocity loop; only a position loop.

The reference voltage leaving the control card is fed via a current amplifier to the motor. Two limit switches are provided at each mechanical end of the motion. One of these is also used for initialisation. A full description of the initialisation is given in Section 2.4.

2.2.4 ON/OFF-controlled Axes

DM - Dichroic Folding Mirror

The Dichroic Folding Mirror only has two positions, in (at upper HW limit) and out (at lower HW limit). It splits the light beam to the autoguider camera and reflect one part of the light beam to the CCD camera which is used for image analysis.

RU and RUT - Reference Unit and Reference Unit Turret.

The Reference Unit consists of the reference Unit Turret (wheel) which is mounted on a moving platform. This platform (RU) moves parallel to the GP1T and GP1Y unit and the position is always between these two units.

The Reference Unit Turret is a wheel with three positions, pin hole, fully open and reference light. The reference light is a LED which is turned on if the wheeel is in this position, respectively turned off when not in this position.

2.2.5 Interlock

The Interlock Card takes care of all limit switches plus the collision detectors. As the two Guide Probes and the Calibration unit share a common field, and as the Turret could be squeezed between Guide Probe 1 and Trombone 1, a hardware interlock is implemented in order to avoid collisions. Each limit switch acts on the interlock; their status can also be read by the computer.

The interlock functions which are dependant on the hardware lower limit or hardware upper limit switches can be active to any time of the normal operation of the nttad. E.g. if the guide probe 1 or guide probe 2 are in the field, the calibration unit upper hardware limit is active, in order to prevent any movement of the calibration unit and vice versa. This is part of the normal operation. Nevertheless the nttad software should not try to start a movement if the respective interlock function is active. The interlock function is evaluated by the position of the involved motor unit (if they are on lower limit or not) and the software calculates whether a real limit switch is active or an interlock condition and returns the appropiate (Error) reply. The functions to check the interlock conditions are located in the file nttadMotionMot.c

Interlock Latch

In case of collision between the two Guide Probes, a latch is set which allows the motors to go backwards only. The signal cgp1gp2i gives the status of the latch. The computer resets the latch when any of guide probe axes X are back at the negative limit: rescgp1gp2o (minimum width:10 microsec). A manual reset is also provided on the front panel of the Interlock Card. A software safety is also implemented and takes care of the restricted area of each axis during normal operation.

Enable

The enable acts on the Interlock Card. The computer can enable all motors, or disable them in the following cases:

In this situation the motor would run away, and the computer would lose control of the axis. To prevent this, a limit is set to the Current Position Error. Position error maximum: 12,000 incremental counts.


2.3 LCU BOARDS HARDWARE SETUP


SLOT 1 - Motorola CPU

SLOT 4 - Servo Amplifier VME4SA #3

ChannelFunctionRt(TG)Rg(P)Ci(I)Cd(D)Rcl
1F9/FMOpen220 KOhmShort circuitOpen0.56 Ohm
2F10/RUTOpen160 KOhmShort circuitOpen0.56 Ohm
3Not used-----
4Not used-----

SLOT 5 - Motion Controller MAC4/INC #1


SLOT 6 - Servo amplifier VME4SA #1

ChannelFunctionRt(TG)Rg(P)Ci(I)Cd(D)Rcl
1F1/GP1XOpen220 KOhmShort circuitOpen0.56 Ohms
2F2/GP1YOpen120 KOhmShort circuitOpen0.56 Ohms
3F3/GP1TOpen220 KOhmShort circuitOpen0.56 Ohms
4F4/RUOpen220 KOhmShort circuitOpen0.56 Ohms

SLOT 7 - Motion controller MAC4/inc #2


SLOT 8 - Servo amplifier VME4SA #2

ChannelFunctionRt(TG)Rg(P)Ci(I)Cd(D)Rcl
1F5/GP2XOpen220 KOhmShort circuitOpen0.56 Ohm
2F6/GP2YOpen120 KOhmShort circuitOpen0.56 Ohm
3F7/GP2TOpen220 KOhmShort circuitOpen0.56 Ohm
4F8/CUOpen220 KOhmShort circuitOpen0.56 Ohm

SLOT 9 - Digital I/O Acromag 9481

2.3 PARAMETER SETTING

All the motors controlled by a MACCON controller need tuning of the servo loop parameters and can be individually set for each axis. All the parameters are configured in the DB of the motor library.

2.3.1 General Parameters

Adapter A Initialization Values


* GP1T at position 160[mm] -1460[mA]

* GP1T at position 106[mm] -1000[mA]

* GP1T at position 155[mm] - 571[mA]

Adapter B Initialization Values

DEVICEInit. Enc. Pos.Max. Pos.[mm]Current [mA]
GP1XTBDTBDTBD
GP1YTBDTBDTBD
GP1TTBDTBDTBD
GP2XTBDTBDTBD
GP2YTBDTBDTBD
GP2TTBDTBDTBD
RUTBDTBDTBD
CUTBDTBDTBD

2.3.2 Servo Loop Gain

The parameters for the proportional gain (Kp) integral gain (Ki) an differential gain (Kd) are listed in the following tables. The two sides of the adapter control software have slightly different final settings. They depend on other factors such as: PER, K, encoder resolution, current loop gain; which are identical for all axes.

The following values can be used as a first approximation:

StateProportional gainIntegral gainDifferential gain
Steady state15,000500200,000

The position ramp is up to 6, 000 incremental counts/second (6mm/s).

2.3.3 Adapter A

Global settings:
guide probe head postion330000
guide probe width107000
guide probe touch position227000
reference unit guide probe y axis touch position438000
reference unit guide probe 1 trombone touch position-5000

The actual configuration setting:
UnitKp (proportional_gain)Ki (integral_gain)Kd (differential_gain)Centre fieldToleranceSearchspeed (low)Searchspeed (high)Zero Pulse PositionSW UL
GP1X750015150000167.2330040001500172500
GP1Y1200040150000165.2330040001500321500
GP1T5000040150000124.03--1500219000
GP2X10000400150000168.93120080001500173500
GP2Y800040150000171.13120080001500322500
GP2T3000040150000122.03--1500222500
RU2000030150000249.253--1500434000
CU1200040150000382.03--1500382000

PER = 1ms; K = 2; SPE = 4000; MOTOR VOLTAGE = +/- 17V.

2.3.4 Adapter B

Global settings:
guide probe head postion330000
guide probe width106000
guide probe touch position219000
reference unit guide probe y axis touch position438000
reference unit guide probe 1 trombone touch position-3000

The actual configuration setting:
UnitKp (proportional_gain)Ki (integral_gain)Kd (differential_gain)Centre fieldToleranceSearchspeed (low)Searchspeed (high)Zero Pulse PositionSW UL
GP1X1000050150000167.3360040001500169500
GP1Y1000050150000161.1360040002000322000
GP1T1000050150000130.53--2000220000
GP2X1500050150000165.83120060002000170000
GP2Y1500050150000164.93120060002000326000
GP2T1500050150000123.03--2000222000
RU750050100000254.05--1500438000
CU50003050000375.03--2000375500

PER = 1ms; K = 2; SPE = 4000; MOTOR VOLTAGE = +/- 17V.

Steady State Current After Positioning

Set by software to a minimal value:

2.3.5 Motion Ranges

The total range is defined by the optical requirements:

Side A

UNITlowSearchVelhighSearchVeltrackingPosOffsettrackingTimeOffsetencoderTicksPerMmmoveTimeoutcenterPoslowerLimitPosupperLimitPos
GP1X3004000TBDTBD1000100000167.2-1000172500
GP1Y3004000TBDTBD1000100000165.2-1000321500
GP1T--TBDTBD1000100000124.0-1000219000
GP2X12008000TBDTBD1000100000168.9-1000173500
GP2Y12008000TBDTBD1000100000171.1-1000322500
GP2T--TBDTBD1000100000122.0-1000222500
RU----1000100000249.25-1000434000
CU----1000100000382.0-1000382000
RUT-----100000---
DM-----100000---


Side B

UNITlowSearchVelhighSearchVeltrackingPosOffsettrackingTimeOffsetencoderTicksPerMmmoveTimeoutcenterPoslowerLimitPosupperLimitPos
GP1X6004000TBDTBD1000100000167.3-1000169500
GP1Y6004000TBDTBD1000100000161.1-1000322000
GP1T--TBDTBD1000100000130.5-1000220000
GP2X12006000TBDTBD1000100000165.8-1000170000
GP2Y12006000TBDTBD1000100000164.9-1000326000
GP2T--TBDTBD1000100000123.0-1000222000
RU----1000100000254.0-1000438000
CU----1000100000375.0-1000375500
RUT-----100000---
DM-----100000---

2.4 OPERATION

Convention.

A positive move on each unit implies:

2.4.1 Initialisation Sequence

This sequence should prevent any collision during the initialisation procedure. From then on, the initialisation of any axis can be done. The computer arbitarily sets upperLimitPos to the maximum possible, and moves the axis negative until it reaches the limit. This is the PARKING position. The first zero pulse after leaving the limit, sets the position counter to zero.

2.4.2 Colision prevention

The mechanical layout of the nttad hardware allows the movement of several motor units which share the same physical area. This is a part of the features of nttad and part of normal operation. The following units can be move concurrently and may collide:

The nttad software dynamically checks at a start or during a movement whether a collision may occur, and in the latter rejects or stops the corresponding motor unit.

2.4.3 Collision Between the Two Guide Probes

To go out of interlock:

2.4.4 Collision of Reference Unit with Guide Probe 1

To go out of the interlock:

2.5 TEST TOOLS

Any function can be tested with ESO software commands or terminal mode.


2.6 SIGNAL DESCRIPTIONS

The signals in the adapter subsystem are divided into the following groups that indicate where the signals originate (inputs to the computer), or where they are routed (outputs from the computer).

2.6.1 Collision Signals

If a collision between guide probe 1 and 2 is detected, the collision detected latch is set. This latch can be cleared by the signal rescgp1gp2o The other collision signals are not latched.

NAMETYPEDESCRIPTION
cgp1gp2irtUINT32SCollision detected between probe 1 and probe 2
.DI*1Collision detected between ref. unit and
guide probe 1, axis Trombone
AACORUGP1Y*DI*1Collision detected between ref. unit and
guide probe 1, axis Y
AACORESET*DO*1Reset the GP1 and 2 collision detected latch

2.6.2 Calibration Unit Signals

NAMETYPEDESCRIPTION
AACUTREFAO*12Cal. unit, torque reference
AACUCURAI*8Cal. unit, motor current
AACUIESDI*1Cal. unit, incremental encoder sine signal
AACUIECDI*1Cal. unit, incremental encoder, cosine signal
AACUIEZDI*1Cal. unit, incremental encoder pulse signal
AACULSP*DI*1Cal. unit, positive limit detected
AACULSN*DI*1Cal. unit, negative limit detected

2.6.3 Folding Mirror Signals (for CCD Camera)

The folding mirror is moved with an on/off motor, ie. no position control is provided. Therefore, the computer output is a motor voltage reference.

NAMETYPEDESCRIPTION
AAFMVREFAO*8Folding mirror, motor voltage reference
AAFMLSP*DI*1Folding mirror, positive limit detected
AAFMLSN*DI*1Folding mirror, negative limit detected

2.6.4 Guide Probe Signals

The guide probe signals can be divided into :

NAMETYPEDESCRIPTION
AAGP1XTREFAO*12Probe 1, axis X, torque reference
AAGP1XCURAI*8Probe 1, axis X, motor current
AAGP1XIESDI*1Probe 1, axis X, incremental encoder sine signal
AAGP1XIECDI*1Probe 1, axis X, incremental encoder cosine signal
AAGP1XIEZDI*1Probe 1, axis X, incremental encoder zero pulse signal
AAGP1XLSP*DI*1Probe 1, axis X, positive limit detected
AAGP1XLSN*DI*1Probe 1, axis X, negative limit detected
AAGP1YTREFAO*12Probe 1, axis Y, torque reference
AAGP1YCURAI*8Probe 1, axis Y, motor current
AAGP1YIESDI*1Probe 1, axis Y, incremental encoder sine signal
AAGP1YIECDI*1Probe 1, axis Y, incremental encoder cosine signal
AAGP1YIEZDI*1Probe 1, axis Y, incremental encoder zero pulse signal
AAGP1YLSP*DI*1Probe 1, axis Y, positive limit detected
AAGP1YLSN*DI*1Probe 1, axis Y, negative limit detected
AAGP1TTREFAO*12Probe 1, axis Trombone, torque reference
AAGP1TCURAI*8Probe 1, axis Trombone, motor current
AAGP1TIESDI*1Probe 1, axis Trombone, incremental encoder sine signal
AAGP1TIECDI*1Probe 1, axis Trombone, incremental encoder cosine signal
AAGP1TIEZDI*1Probe 1, axis Trombone, incremental encoder zero pulse signal
AAGP1TLSP*DI*1Probe 1, axis Trombone, positive limit detected
AAGP1TLSN*DI*1Probe 1, axis Trombone, negative limit detected
AAGP2XTREFAO*12Probe 2, axis X, torque reference
AAGP2XCURAI*8Probe 2, axis X, motor current
AAGP2XIESDI*1Probe 2, axis X, incremental encoder sine signal
AAGP2XIECDI*1Probe 2, axis X, incremental encoder cosine signal
AAGP2XIEZDI*1Probe 2, axis X, incremental encoder zero pulse signal
AAGP2XLSP*DI*1Probe 2, axis X, positive limit detected
AAGP2XLSN*DI*1Probe 2, axis X, negative limit detected
AAGP2YTREFAO*12Probe 2, axis Y, torque reference
AAGP2YCURAI*8Probe 2, axis Y, motor current
AAGP2YIESDI*1Probe 2, axis Y, incremental encoder sine signal
AAGP2YIECDI*1Probe 2, axis Y, incremental encoder cosine signal
AAGP2YIEZDI*1Probe 2, axis Y, incremental encoder zero pulse signal
AAGP2YLSP*DI*1Probe 2, axis Y, positive limit detected
AAGP2YLSN*DI*1Probe 2, axis Y, negative limit detected
AAGP2TTREFAO*12Probe 2, axis Trombone, torque reference
AAGP2TCURAI*8Probe 2, axis Trombone, motor current
AAGP2TIESDI*1Probe 2, axis Trombone, incremental encoder sine signal
AAGP2TIECDI*1Probe 2, axis Trombone, incremental encoder cosine signal
AAGP2TIEZDI*1Probe 2, axis Trombone, incremental encoder zero pulse signal
AAGP2TLSP*DI*1Probe 2, axis Trombone, positive limit detected
AAGP2TLSN*DI*1Probe 2, axis Trombone, negative limit detected

2.6.5 Reference Unit Signals

NAMETYPEDESCRIPTION
AARUTREFAO*12Ref. unit, torque reference
AARUCURAI*8Ref. unit, motor current
AARUIESDI*1Ref. unit, incremental encoder sine signal
AARUIECDI*1Ref. unit, incremental encoder cosine signal
AARUIEZDI*1Ref. unit incremental encoder zero pulse signal
AARULSP*DI*1Ref. unit, positive limit detected
AARULSN*DI*1Ref. unit, negative limit detected
AARUTVREFAO*8Ref. unit, turret motor voltage reference
AARUTP0DI*1Ref. unit, turret position bit 0
AARUTP1DI*1Ref. unit, turret position bit 1
AARUTPC0DO*1Ref. unit, turret position command bit 0
AARUTPC1DO*1Ref. unit, turret position command bit 1

2.6.6 Miscellaneous Signals

NAMETYPEDESCRIPTION
AAD1TEMPDI*1Driver Board 1 overtemperature warning
AAD2TEMPDI*1Driver board 2 overtemperature warning
AAD3TEMPDI*1Driver board 3 overtemperature warning
AAENABLEDO*1Enable power amplifiers
AAISITON*DO*1Camera 1 and 2 power on
AAREFLIGHT*DO*1Reference light on

2.7 CONNECTION SCHEDULE

SIGNALTSVME 440 No.1, CONN P2, ROW ATSVME 440 No 1, CONN P2, ROW C
__________________________________________________
__________________________________________________
__________________________________________________
__________________________________________________
__________________________________________________
__________________________________________________
__________________________________________________


2.8 INTERLOCK CARD

2.8.1 Description

Single-slot 6U height card.

+15V logic supply for limit switches.

+5V logic supply interlock logic.

2.8.2 Function

Interlock survey between the various axes.

When an interlock takes place, the current motion is disabled and a warning is sent to the computer. A relay contact is opened in the motor line. The LEDS on the front panel displays the interlock status.

2.8.3 Collision Detector

Blades on the guide probe heads.

The two metallic "blades" are included in a Wheatstone bridge. Any imbalance in the bridge (contact with the other blade to ground or to supply voltage) causes an interlock active. As the contact between the two blades may be intermittent (if, for example, the two guide probes are sliding against each other) this intermittent lock is latched and will be reset by the computer only after new initialisation has been carried out.

Reference unit collision detectors

Implemented with proximity switches as for other positive or negative limits, therefore they are also displayed with green LEDs.

2.8.4 Limit Switch Mounting and Adjustment

For increased safety, the proximity sensors are mounted such that they are normally active:

2.8.5 Table of P1 Signals

Definition: a (*) after a signal name means logically true when voltage level is low.

PINROWSIGNALROWSIGNAL
_______________________________________________________
_______________________________________________________
_______________________________________________________
_______________________________________________________
_______________________________________________________
_______________________________________________________
_______________________________________________________
_______________________________________________________
_______________________________________________________
_______________________________________________________
_______________________________________________________
_______________________________________________________
_______________________________________________________
_______________________________________________________
_______________________________________________________
_______________________________________________________
_______________________________________________________
_______________________________________________________
_______________________________________________________
_______________________________________________________
_______________________________________________________
_______________________________________________________
_______________________________________________________
_______________________________________________________
_______________________________________________________
_______________________________________________________
_______________________________________________________
_______________________________________________________
_______________________________________________________
_______________________________________________________
_______________________________________________________
_______________________________________________________

2.8.6 Interlock Board - P2 Connector - Pin Assignment

Definition: a (*) after a signal name means logically true when voltage level is low.

Pin#AC
1VC2VC1
2GND2GND1
3BLADE2+BLADE1+
4BLADE2-BLADE1-
5..
6CO-GP1-GP2-OUT*CO-GP1-GP2-RESET*
7..
8RU-LED-OUTRU-LED-IN*
9CO-RU-GP1Y-OUT*CO-RU-GP1Y-IN
10CO-RU-GP1T-OUT*CO-RU-GP1T-IN
11RUT-P0-OUTRUT-P0-IN
12RUT-P1-OUTRUT-P1-IN
13F10-UL-OUT.
14F10-LL-OUT.
15F9-UL-OUTF9-UL-IN
16F9-LL-OUTF9-LL-IN
17F8-UL-OUTF8-UL-IN
18F8-LL-OUTF8-LL-IN
19F7-UL-OUTF7-UL-IN
20F7-LL-OUTF7-LL-IN
21F6-UL-OUTF6-UL-IN
22F6-LL-OUTF6-LL-IN
23F5-UL-OUTF5-UL-IN
24F5-LL-OUTF5-LL-IN
25F4-UL-OUTF4-UL-IN
26F4-LL-OUTF4-LL-IN
27F3-UL-OUTF3-UL-IN
28F3-LL-OUTF3-LL-IN
29F2-UL-OUTF2-UL-IN
30F2-LL-OUTF2-LL-IN
31F1-UL-OUTF1-UL-IN
32F1-LL-OUTF1-LL-IN

2.9 VME4SA AMPLIFIER LINK


2.10 ADAPTER TEST BOX

For maintenance facilities, a test box is provided.

Functions

Requirement

Procedure

IMPORTANT: Before using the Test Box, try the handset on VME4SA Amplifier Board.

The Test Box BYPASSES some Interlock Potections !

YOU MUST KNOW WHAT YOU ARE DOING WHEN USING THE ADAPTER TEST BOX.


2.11 DRAWING LIST

TITLE/ SUB-TITLESHT NUMBERLAST UPDATEDRAWING NUMBER
ADAPTER
- General Assembly 1NTT30-00-01-A
- Adapter Controller Boxes intercon. 114-03-90INTERCON.SCH
- Intercon. Adapter to Control Rack 114-03-90EXTCAB01.DWG
- Adapter Rotator Cable Routing (Sht 1) 117-05-90ARACAB01.DWG
- Adapter Rotator Cable Routing (Sht 2) 117-05-90ARBCAB01.DWG
- Instrument Room A Cable Routing 108-03-90IRACAB01.DWG
- Instrument Room B Cable Routing 108-03-90IRBCAB01.DWG
- Adapter Interconnection Overview 106-03-90CS-E-1663
- Controller Interconnection Diagram108-05-89CS-E-1520
- Interlock Principle113-03-90CS-E-1519
- Interlock General Diagram106-05-89CS-E-1601
Folding Mirror Control130-03-88CS-E-1504
Adapter Interconn. Wiring Diagram112-06-90CS-E-1659
212-06-90
Guide Probe Interlock Card107-12-88CS-P-1567
213-03-90
306-05-89
406-05-89
510-11-88
Driver Card1, 206-03-90CS-E-1501
Driver Card PCB Layout1CS-P-1501B
Current Amplifier111-04-88CS-E-1507
VME System Reset Stretcher111-11-88CS-P-1558
Adapter Supply Chassis
- Wiring Diagram106-03-90CS-E-1670
- Layout105-07-89CS-E-1674
Adapter Guide Probe Controller1/306-03-90CS-E-1672
- Chassis Layout2/328-06-89CS-E-1672
- Wiring Diagram3/306-03-90CS-E-1672
- ISIT Remote Power ON/OFF113-02-90ISITON.SCH
ANTARES
- Layout107-07-89CS-E-1676
- Control Chassis Wiring106-07-89CS-E-1675
- 5V Relay112-12-88CS-P-1532
- Parts List118-07-89
- Image Analysis Head Correction121-11-88TK512M1A
ADAPTER WIRING LIST
- Subsystem Power Supply Distribution104-09-89AAPSDIST.SCH
- ISIT 1, 2 Wiring Diagram116-04-90AAISIT.SCH
- Block Unit Wiring117-01-90AABLOCKW.SCH
- Guide Probe 1 X Axis 102-01-90AAGP1X'.SCH
- Guide Probe 1 Y Axis 124-03-89AAGP1Y'.SCH
- Guide Probe 1 T Axis 124-03-89AAGP1T'.SCH
- Reference Unit Wiring 119-04-89AARU'.SCH
- Reference Unit Turret Wiring 116-03-90AARUT'.SCH
- Calibration Unit 116-03-90AACU'.SCH
- Guide Probe 2 X Axis 116-03-90AAGP2X'.SCH
- Guide Probe 2 Y Axis 119-04-89AAGP2Y'.SCH
- Guide Probe 2 T Axis 124-03-89AAGP2T'.SCH
- Folding Mirror 116-03-90AAFM'.SCH
Adapter Test Box Front Panel120-09-89CS-E-1685
Limit Switch Wiring 101-11-94LIMWIR1.DWG
LCU Motor Wiring 101-11-94MOTWIR1.DWG
Encoder Connections 113-10-94PWRENCOD.DWG
Limit and Status Switch 113-10-94PWRLIMSW.DWG
LCU Encoder Wiring (Sht 1) 101-11-94ENCWIR1.DWG
LCU Encoder Wiring (Sht 2) 201-11-94ENCWIR2.DWG
LCU VME 4SA Backplane 101-11-94HARTING1.DWG
VME Layout 130-09-94VME1.DWG
LCU Power Cable 120-04-95PWRCAB1.DWG
LCU Fan Wiring 102-11-94FANWIR.DWG
LCU Test Power Supply 128-10-94PS1.DWG
LCU Power Supply Wiring 102-11-94PSWIR.DWG
LCU Digital I/O Wiring 101-11-94DIGIO.DWG
Interlock RU Collision 105-12-94COLL.DWG
Interlock GP Collision 105-12-94COLL2.DWG
Interlock Turret Position 116-11-94TORRPOS.DWG
Interlock F1/GP1X 105-12-94ILF1.DWG
Interlock F2/GP1Y 105-12-94ILF2.DWG
Interlock F3/GP1T 105-12-94ILF3.DWG
Interlock F4/RU 116-11-94ILF4.DWG
Interlock F5/GP2X 105-12-94ILF5.DWG
Interlock F6/GP2Y 116-11-94ILF6.DWG
Interlock F7/GP2T 116-11-94ILF7.DWG
Interlock F8/CU 105-12-94ILF8.DWG
Interlock F9/FM 116-11-94ILF9.DWG
Interlock F10/RUT 116-11-94ILF10.DWG
Interlock F11/ISITON 116-11-94ILF11.DWG
Interlock F12/RULED 116-11-94ILF12.DWG
Interlock Board (Sht 1) 104-11-94ILBOARD1.DWG
Interlock Board (Sht 2) 204-11-94ILBOARD2.DWG
Relay Interface 103-11-94RELAYB1.DWG
Sensor Board 122-11-94HEADS.DWG
LCU Rear Panel 127-09-94PANEL1.DWG